Abstract

Modern air battlefield operations are characterized by flexibility and change, and the battlefield evolves rapidly and intricately. However, traditional air target intent recognition methods, which mainly rely on manually designed neural network models, find it difficult to maintain sustained and excellent performance in such a complex and changing environment. To address the problem of the adaptability of neural network models in complex environments, we propose a lightweight Transformer model (TransATIR) with a strong adaptive adjustment capability, based on the characteristics of air target intent recognition and the neural network architecture search technique. After conducting extensive experiments, it has been proved that TransATIR can efficiently extract the deep feature information from battlefield situation data by utilizing the neural architecture search algorithm, in order to quickly and accurately identify the real intention of the target. The experimental results indicate that TransATIR significantly improves recognition accuracy compared to the existing state-of-the-art methods, and also effectively reduces the computational complexity of the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.