Abstract

Three-dimensional (3D) porous tissue scaffolds are being engineered to promote cell attachment, cell proliferation and functioning heterogeneous tissue formation. A scaffold's structure and transport capabilities need to mimic cells' natural geometrical and architectural environment and will need to consistently provide a flux throughout the scaffold to deliver materials for growth and waste removal. This paper presents our work on establishing a connectivity characterization of designed unit cell tissue structures for surface alignment between units to insure both geometric connectivity and mass and fluid transport within a heterogeneous tissue scaffold to meet both structural and biological requirements for cell growth and tissue growth. To capture this information, skeletal representations of the unit cell structures have been utilized for subsequent assembly processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.