Abstract

AbstractWe give a simple set of geometric conditions on curves $\unicode[STIX]{x1D702}$, $\widetilde{\unicode[STIX]{x1D702}}$ in $\mathbf{H}$ from $0$ to $\infty$ so that if $\unicode[STIX]{x1D711}:\mathbf{H}\rightarrow \mathbf{H}$ is a homeomorphism which is conformal off $\unicode[STIX]{x1D702}$ with $\unicode[STIX]{x1D711}(\unicode[STIX]{x1D702})=\widetilde{\unicode[STIX]{x1D702}}$ then $\unicode[STIX]{x1D711}$ is a conformal automorphism of $\mathbf{H}$. Our motivation comes from the fact that it is possible to apply our result to random conformal welding problems related to the Schramm–Loewner evolution (SLE) and Liouville quantum gravity (LQG). In particular, we show that if $\unicode[STIX]{x1D702}$ is a non-space-filling $\text{SLE}_{\unicode[STIX]{x1D705}}$ curve in $\mathbf{H}$ from $0$ to $\infty$, and $\unicode[STIX]{x1D711}$ is a homeomorphism which is conformal on $\mathbf{H}\setminus \unicode[STIX]{x1D702}$, and $\unicode[STIX]{x1D711}(\unicode[STIX]{x1D702})$, $\unicode[STIX]{x1D702}$ are equal in distribution, then $\unicode[STIX]{x1D711}$ is a conformal automorphism of $\mathbf{H}$. Applying this result for $\unicode[STIX]{x1D705}=4$ establishes that the welding operation for critical ($\unicode[STIX]{x1D6FE}=2$) LQG is well defined. Applying it for $\unicode[STIX]{x1D705}\in (4,8)$ gives a new proof that the welding of two independent $\unicode[STIX]{x1D705}/4$-stable looptrees of quantum disks to produce an $\text{SLE}_{\unicode[STIX]{x1D705}}$ on top of an independent $4/\sqrt{\unicode[STIX]{x1D705}}$-LQG surface is well defined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call