Abstract
AbstractWe demonstrate how to obtain integrability results for the Schramm‐Loewner evolution (SLE) from Liouville conformal field theory (LCFT) and the mating‐of‐trees framework for Liouville quantum gravity (LQG). In particular, we prove an exact formula for the law of a conformal derivative of a classical variant of SLE called . Our proof is built on two connections between SLE, LCFT, and mating‐of‐trees. Firstly, LCFT and mating‐of‐trees provide equivalent but complementary methods to describe natural random surfaces in LQG. Using a novel tool that we call the uniform embedding of an LQG surface, we extend earlier equivalence results by allowing fewer marked points and more generic singularities. Secondly, the conformal welding of these random surfaces produces SLE curves as their interfaces. In particular, we rely on the conformal welding results proved in our companion paper Ang, Holden and Sun (2023). Our paper is an essential part of a program proving integrability results for SLE, LCFT, and mating‐of‐trees based on these two connections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Communications on Pure and Applied Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.