Abstract

Inspired by the enhanced water permeability of carbon nanotubes (CNTs), molecular dynamics simulations were performed to investigate the transport behavior through nanotubes made of boron nitride (BNNT), silicon carbide (SiC), and silicon nitride (SiN) alongside carbon nanotubes (which have different hydrophobic attributes) considering their implication for reverse osmosis (RO) membranes under different practical environments. According to our findings, not only do CNTs but also other kinds of nanotubes exhibit transition anomalies with increasing diameter. Utilizing the robust two-phase thermodynamic (2PT) methods, the current examinations shed light on thermodynamic origin of favorable water filling of these nanotubes. The results show that regardless of the nanotube material, the filling of water inside small nanopores (d < 10 Å) as well as within pores of diameter larger than 15 Å will always be favored by the entropy of filling. However, the entropic preference for filling nanotubes with a diameter of 10-15 Å depends on the constituent material. In particular, the enhancement in total entropy of confined water was mainly due to the increased rotational freedom of confined water molecules. The thermodynamic origin of water transport was correlated with the structural and fluidic behavior of water inside these nanotubes. The observed data for density, flow, structure correlation functions, water-water coordination, tetrahedral order parameter, hydrogen bonds, and density of states functions quantitatively support the observed entropy behavior. Of critical importance is that the present study demonstrates the effectiveness of RO filtration using nanotubes of boron nitride rather than carbon. Furthermore, it was found that one should avoid the use of silicon nanotubes unless filtration needs to be performed under harsh environments where nanotube of other materials cannot survive. Specifically, the results show that both the structural and dynamic properties of water confined in BNNTs are similar to those of CNT's, and for SiNT it is similar as SiC. Our results show that besides the nanotube material, the chirality index of the nanotube also plays a significant role in determining the structure, dynamics and thermodynamics of confined water molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call