Abstract

Herein we have made a comparative study of the efficiency of three different nanotubes viz. Carbon nanotube (CNT), boron nitride nanotube (BNNT) and silicon carbide nanotube (SiCNT) to deliver the cancerous drug, Azacitidine (AZD). The atomistic description of the encapsulation process of AZD in these nanotubes has been analyzed by evaluating parameters like adsorption energy, electrostatic potential map, reduced density gradient (RDG). Higher adsorption energy of AZD with BNNT (−0.66eV), SiCNT (−0.92eV) compared to CNT (−0.56eV) confirms stronger binding affinity of the drug for the former than the later. Charge density and electrostatic potential map suggest that charge separation involving BNNT and CNT is more prominent than SiCNT. Evaluation of different thermodynamic parameters like Gibbs free energy, enthalpy change revealed that the overall encapsulation process is spontaneous and exothermic in nature and much favorable with BNNT and SiCNT. Stabilizing interactions of the drug with BNNT and SiCNT has been confirmed from RDG analysis. ADMP molecular dynamics simulation supports that the encapsulation process of the drug within the NT at room temperature. These results open up unlimited opportunities for the applications of these NTs as a drug delivery system in the field of nanomedicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call