Abstract
In this paper, it is proved that Lie algebras of Chevalley type (An, Bn, Cn, Dn, E6, E7, E8, F4, and G2) over associative commutative rings with 1/2 (with 1/2 and 1/3 in the case of G2) have unique addition. As a corollary of this theorem, we note the uniqueness of addition in semisimple Lie algebras of Chevalley type over fields of characteristic ≠ 2 (≠ 2, 3 in the case of G2).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have