Abstract
Mean curvature flow evolves isometrically immersed base manifolds $M$ in the direction of their mean curvatures in an ambient manifold $\bar{M}$. If the base manifold $M$ is compact, the short time existence and uniqueness of the mean curvature flow are well-known. For complete isometrically immersed submanifolds of arbitrary codimensions, the existence and uniqueness are still unsettled even in the Euclidean space. In this paper, we solve the uniqueness problem affirmatively for the mean curvature flow of general codimensions and general ambient manifolds. In the second part of the paper, inspired by the Ricci flow, we prove a pseudolocality theorem of mean curvature flow. As a consequence, we obtain a strong uniqueness theorem, which removes the assumption on the boundedness of the second fundamental form of the solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.