Abstract

In this paper, we investigate the Gauss maps of a Ricci-mean curvature flow. A Ricci-mean curvature flow is a coupled equation of a mean curvature flow and a Ricci flow on the ambient manifold. Ruh and Vilms (Trans Am Math Soc 149: 569–573, 1970) proved that the Gauss map of a minimal submanifold in a Euclidean space is a harmonic map, and Wang (Math Res Lett 10(2–3):287–299, 2003) extended this result to a mean curvature flow in a Euclidean space by proving its Gauss maps satisfy the harmonic map heat flow equation. In this paper, we deduce the evolution equation for the Gauss maps of a Ricci-mean curvature flow, and as a direct corollary we prove that the Gauss maps of a Ricci-mean curvature flow satisfy the vertically harmonic map heat flow equation when the codimension of submanifolds is 1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.