Abstract
We investigate well-posedness of initial-boundary value problems for a class of nonlinear parabolic equations with variable density. At some part of the boundary, called singular boundary, the density can either vanish or diverge or not need to have a limit. We provide simple conditions for uniqueness or non-uniqueness of bounded solutions, depending on the behaviour of the density near the singular boundary.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have