Abstract

ABSTRACT This paper is devoted to the uniqueness of global-in-time conservative solutions and generic regularity for the shallow water waves of moderate amplitude equation (Constantin-Lannes equation). The Constantin-Lannes equation possible development of singularities in finite time, and beyond the occurrence of wave breaking, it exists global conservative solutions. In the present paper, we will prove the uniqueness of global-in-time conservative solutions for the Constantin-Lannes equation with general initial data by analyzing the evolution of the quantities u and along each characteristic. Moreover, we consider that piecewise smooth solutions with only generic singularities are dense in the whole solution set by Thom's transversality Lemma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.