Abstract
This study delineates the development of a solar energy system that leverages concentrated solar power (CSP) technology to supply both electricity and potable water for residential applications. The proposed thermal architecture uniquely integrates heliostat solar fields with a dual-loop power generation cycle, augmented by a seawater desalination system that employs reverse osmosis (RO) membranes. To bolster electricity production, a thermoelectric generator (TEG) has been incorporated into the system's design framework. A comprehensive analysis of the system has been performed, encompassing thermodynamic and economic evaluations. Furthermore, a parametric analysis has been executed to investigate the effects of critical parameters on the system's operational efficiency. The efficacy of the system was rigorously assessed through a case study that examined its capabilities for daily production outputs. This research, grounded in the analytical projections from Saudi Arabia and the favorable environmental conditions characteristic of the region, explores the operational performance of the system within this specific geographical context. The primary objective of this inquiry is to determine the ideal operational parameters by employing multi-criteria optimization methods tailored to the established system. Variations in compressor pressure ratios were found to significantly affect the performance of the Brayton cycle and the exergetic efficiency of the system, with optimal economic efficiency being realized at a specific pressure ratio. Furthermore, increasing the inlet temperatures in the organic Rankine cycle has been shown to improve system efficiency up to a certain limit, beyond which potential reliability issues could arise. The case study demonstrated that electricity generation peaks during the summer months, particularly in June, aligning with a high volume of freshwater production totaling 264,530 m³. The optimization efforts achieved an exergetic efficiency of 17.69 % and an overall cost of $359.58 per hour.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have