Abstract
Viruses are the most abundant biological entities in the biosphere; however, little is known about viral ecology in high altitude lakes. Here, we characterized viruses from 13 lakes, nine of which located ≥4500 m above sea level, on the Tibetan Plateau, the highest plateau on Earth. The abundance of virus-like particle (VLP) in Tibetan lakes ranged from 4.8 ± 0.2 × 105 VLPs mL−1 to 6.0 ± 0.2 × 107 VLPs mL−1 and the virus-to-bacterium ratio was in the lower range of values reported for other lakes. The viral population size was positively correlated with turbidity and negatively correlated with particulate organic carbon concentration. Highly diverse VLP morphologies, including large (~300 nm) morphotypes, were observed. Phylogenetic analysis of T4-like bacteriophages based on major capsid gene (g23) identified a novel viral group, which were detected in abundance in hyposaline and mesosaline Tibetan lakes. Adaptation to lake evolution, water source (glacier-fed or non-glacier-fed) and environmental conditions (e.g., salinity, phosphorus concentration and productivity) are likely responsible for the variation in T4-like myovirus community composition in contrasting Tibetan lakes. This first investigation of viruses in high-altitude alpine lakes above 4500 m could contribute to our understanding of viral ecology in global alpine lakes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have