Abstract

A variety of multiscale solid-state NMR techniques were used to characterize the heterogeneous structure and dynamics of the interphase and cross-linked network in nanostructured epoxy resin/block copolymer (ER/BCP) blends, focusing on the role of ER-miscible blocks containing poly(ε-caprolactone) (PCL) or poly(ethylene oxide) (PEO) blocks having different intermolecular interactions with ER. 1H spin-diffusion experiments indicate that the interphase thickness of PEO-containing blends is obviously smaller than that of PCL-containing blends. High-resolution 1H fast magic-angle spinning (MAS) spin-exchange experiments reveal detailed interfacial mixing between ER and BCPs for the first time, and two different types of interphase structure are found. 1H fast MAS double-quantum filter experiments provide a fast and convenient detection of interphase composition, including immobilized BCPs and partially cured or local damaged ER network. The driving force for the interphase formation and miscibility in PCL-containing blends was successfully determined by high-resolution 13C CPMAS experiments, demonstrating the formation of hydrogen bonds between PCL and ER; competing hydrogen bonding interactions were also found when ER was blended with PEO-b-PCL (EOCL). A new calculation method is proposed to quantitatively determine the distribution of different blocks in the interphase and dispersed phase for PCL-containing blends in combination with 13C CPMAS and 1H spin-diffusion experiments. A 13C T1 spin–lattice relaxation experiment provides a quantitative determination of the amount of local destroyed network in the interphase. Furthermore, it is found that incorporation of BCPs induces unexpected enhanced rigidity of the cross-linked network. On the basis of NMR results, we propose a model to describe the unique structure and dynamics of the interphase and cross-linked network as well as their underlying formation mechanism in ER/BCP blends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.