Abstract

A new chiral lactic acid derivative is presented, exhibiting a frustrated liquid crystalline phase, namely the orthogonal twist grain boundary TGBA phase in a broad temperature interval. A unique effect is observed that the applied electric field reversibly transforms the planar TGBA texture to the homeotropic one, homogeneously dark in crossed polarizers. The transformation is analogous to the Frederiks transition known in nematics, in which switching under electric field is driven by the positive dielectric anisotropy. A similar effect is established also in the SmA phase of the racemic mixture, where the field induced transformation is irreversible. A positive dielectric anisotropy in both the chiral compound and the racemic mixture is detected up to the frequency of about 10 kHz, above this frequency the anisotropy is negative. The unusual behavior of the TGBA phase under the electric field can be explained by the specific packing of molecules within the smectic layers, resulting in a relatively high layer compressibility which lowers the energy of the structural defects and thus facilitates the structure transformation. The perfectly dark state of the studied compounds, induced by the electric field, either stable or reversible, is appealing for specific applications. The change of the sign of the dielectric anisotropy, known in nematics as the dual frequency effect, might be important for photonics such as adaptive or diffractive optics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.