Abstract
We have extended our earlier work to show that individual 14-20mer peptide nucleic acid probes directed against interspersed alpha-satellite sequences can specifically identify chromosomes. Peptide nucleic acid (PNA) probes were used to detect chromosomal abnormalities and repeat structure in the human genome by fluorescence in situ hybridization (FISH). The hybridization of a single PNA probe species directed against a highly abundant alpha-satellite DNA repeat sequence was sufficient to absolutely identify a chromosome. Selection of highly repetitive or region-specific DNA repeats involved DNA database analysis. Distribution of a specific repeat sequence in human genome was estimated through two means: a computer program "whole genome" approach based on approximately 400 Mb (12%) human genomic sequence. The other method involved directed search for alpha satellite sequences. In total, approximately 240 unique DNA repeat candidates were found. Forty-two PNA probes were designed for screening chromosome-specific probes. Ten chromosome-specific PNA probes for human Chromosomes (Chrs) 1, 2, 7, 9, 11, 17, 18, X, and Y have been identified. Interphase and metaphase results demonstrate that chromosome-specific PNA probes are capable of detecting simple aneuploidies (trisomies) in human. Another set of PNA probes showed distinct banding-like patterns and could be used as sequence-specific stains for chromosome "bar coding". Potential application of PNA probes for investigating repeat structure and function is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.