Abstract

A successful method has been developed for the detection of live Yersinia pestis, the plague bacillus, which incorporates nascent RNA synthesis. A fluorescent in situ hybridization (FISH) assay using peptide nucleic acid (PNA) probes was developed specifically to differentiate Y. pestis strains from closely related bacteria. PNA probes were chosen to target high copy mRNA of the Y. pestis caf1 gene, encoding the Fraction 1 (F1) antigen, and 16S ribosomal RNA. Among Yersinia strains tested, PNA probes Yp-16S-426 and Yp-F1-55 exhibited binding specificities of 100% and 98%, respectively. Y. pestis grown in the presence of competing bacteria, as might be encountered when recovering Y. pestis from environmental surfaces in a post-release bioterrorism event, was recognized by PNA probes and neither hybridization nor fluorescence was inhibited by competing bacterial strains which exhibited faster growth rates. Using fluorescence microscopy, individual Y. pestis bacteria were clearly differentiated from competing bacteria with an average detection sensitivity of 7.9 × 10 3 cells by fluorescence microscopy. In the current system, this would require an average of 2.56 × 10 5 viable Y. pestis organisms be recovered from a post-release environmental sample in order to achieve the minimum threshold for detection. The PNA-FISH assays described in this study allow for the sensitive and specific detection of viable Y. pestis bacteria in a timely manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.