Abstract

AbstractThe common neglect of the prominent bacterial growth and accumulation on polymer‐based thermal conductive materials used in medical electronic devices will hurt the functionality and lifetime of medical devices, and sometimes even lead to medical accidents. In this study, we developed a novel ternary composite with excellent antimicrobial and thermal conductive properties to solve this problem. This composite was composed of antimicrobial functionalized hexagonal boron nitride (AB@h‐BN) nanoplatelets, low melt alloys (LMAs), and epoxy. Antimicrobial testing showed that the AB@h‐BN/LMAs/epoxy composites were 100% against both Escherichia coli and Staphylococcus aureus; their antibacterial mechanism was contact killing and was harmless to the environment. Besides enhancing the antimicrobial property, the AB@h‐BN nanoplatelets connected the mutually independent LMAs, forming the continuous network for heat conduction in the epoxy. Benefited from this distinctive structure, the thermal conductivity of AB@h‐BN/LMAs/epoxy can reach 2.66 Wm−1 k−1, which represented an enhancement of about 1141% over the pure epoxy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.