Abstract
Interface is a critical factor in determining the properties of polymer composites. Generally, the physicochemical properties of the interface are closely associated with the surface chemistry of fillers. In this study, we report a simple method to fabricate boron nitride (BN) nanoplatelets using a sonication-centrifugation technique and investigate the effects of functionalization BN nanoplatelets on thermal properties of epoxy composites. Two methods have been used for functionalizing BN nanoplatelets: non-covalent functionalization by octadecylamine (ODA) and covalent functionalization by hyperbranched aromatic polyamide (HBP). The functionalized BN nanoplatelets were characterized by Fourier-transform infrared (FT-IR), nuclear magnetic resonance ( 1H NMR), thermogravimetric analyzer (TGA), and transmission electron microscopy (TEM). Epoxy composites were fabricated by incorporating three kinds of fillers: BN nanoplatelets, BN nanoplatelets functionalized by ODA (BN-ODA), and BN nanoplatelets functionalized by HBP (BN-HBP). Our results show that the BN-HBP results in a strong interface and thus the composites exhibit significantly increased glass transition temperature, thermal decomposition temperature, thermal conductivity and dynamic thermal mechanical modulus. BN-ODA produced intermediate interface interaction, resulting in a moderate improvement of thermal properties. The composites with BN nanoplatelets show the least improvements of thermal properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.