Abstract

Freshwater mussels (order Unionoida) are a diverse radiation of parasitic bivalves that require temporary larval encystment on vertebrate hosts to complete metamorphosis to free-living juveniles. The freshwater mussel-fish symbiosis represents a useful relationship for understanding eco-evolutionary dynamics in freshwater ecosystems but the practicality of this promising model system is undermined by the absence of a stable freshwater mussel phylogeny. Inadequate character sampling is the primary analytical impediment obfuscating a coherent phylogeny of freshwater mussels, specifically the lack of nuclear molecular markers appropriate for reconstructing supraspecific relationships and testing macroevolutionary hypotheses. The objective of this study is to develop a phylogenomic resource, specifically an anchored hybrid enrichment probe set, capable of capturing hundreds of molecular markers from taxa distributed across the entirety of freshwater mussel biodiversity. Our freshwater mussel specific anchored hybrid enrichment probe set, called Unioverse, successfully captures hundreds of nuclear protein-coding loci from all major lineages of the Unionoida and will facilitate more data-rich and taxonomically inclusive reconstructions of freshwater mussel evolution. We demonstrate the utility of this resource at three disparate evolutionary scales by estimating a backbone phylogeny of the Bivalvia with a focus on the Unionoida, reconstructing the subfamily-level relationships of the Unionidae, and recovering the systematic position of the phylogenetically unstable genus Plectomerus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.