Abstract

The unimolecular fragmentation of internal energy selected 1,2-epoxypropane cations has been studied by fixed-wavelength photoelectron—photoion coincidence spectroscopy. Branching ratios for the prominent fragment ions are reported up to an ionization energy of I = 14 eV. It is shown that 1,2-epoxypropane cations initially formed with none or only little vibrational excitation in the electronic ground state do not dissociate, though their excess energy with respect to the lowest energetic fragmentation pathway is 1.25 eV. As the internal energy is increased, slow fragmentation into several dissociation channels is observed. This is used to explain a comparably slow dissociation process observed in the case of acetone molecular ions initially excited to their electronic à state. CH 2C(OH)CH 3 + and/or CH 3CHCHOH + are proposed as precursors for these low-rate unimolecular reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.