Abstract

This research explores the structural, electronic, optical, and hydrogen storage properties of borophene nanoribbons (BNRs) with armchair (ANR-B-H) and zigzag (ZNR B-H) edges. Computational simulations optimized these structures, revealing that 7ZNR-B-H has a superior binding energy. Chemical modifications, such as fluorine passivation and functionalization, influenced bond parameters and quantum properties. Bilayer BNRs showed increased stability and enhanced electrical conductivity. Our study demonstrated promising hydrogen storage capabilities, with passivated and functionalized BNRs achieving suitable adsorption energies and a significant gravimetric storage capacity of 20.32 wt%, exceeding DOE standards. NH2 functionalization notably improved adsorption energy, enhancing potential for efficient hydrogen storage. Changes in absorption spectra post-H2 adsorption further highlight BNRs’ potential for hydrogen storage applications. These findings provide valuable insights into BNRs, paving the way for their use in electronic devices and hydrogen storage systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.