Abstract
A quantum mechanical eigenchannel theory of unimolecular dissociation is outlined with specific reference to systems with many closed and few open channels. The resonances (whose lifetimes determine state specific dissociation rates) are shown to decay at rates determined by the fractional open channel weightings in the relevant eigenchannels, while the relative weightings between the open channels determines the fragment internal state distribution. An isolated resonance, random eigenvector version of the theory bears a similarity with established statistical theories. A simplified model application to the in plane dissociation of HCN is reported, for which 60 channels are required for convergence. The decay rates for different resonances are found to be broadly statistical, but the fragment state distributions vary markedly from one resonance to another even when dynamical interactions between many overlapping resonances are taken into account.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.