Abstract
We show that the finitely generated simple left orderable groups $G_{\!\unicode[STIX]{x1D70C}}$ constructed by the first two authors in Hyde and Lodha [Finitely generated infinite simple groups of homeomorphisms of the real line. Invent. Math. (2019), doi:10.1007/s00222-019-00880-7] are uniformly perfect—each element in the group can be expressed as a product of three commutators of elements in the group. This implies that the group does not admit any homogeneous quasimorphism. Moreover, any non-trivial action of the group on the circle, which lifts to an action on the real line, admits a global fixed point. It follows that any faithful action on the real line without a global fixed point is globally contracting. This answers Question 4 of the third author [A. Navas. Group actions on 1-manifolds: a list of very concrete open questions. Proceedings of the International Congress of Mathematicians, Vol. 2. Eds. B. Sirakov, P. Ney de Souza and M. Viana. World Scientific, Singapore, 2018, pp, 2029–2056], which asks whether such a group exists. This question has also been answered simultaneously and independently, using completely different methods, by Matte Bon and Triestino [Groups of piecewise linear homeomorphisms of flows. Preprint, 2018, arXiv:1811.12256]. To prove our results, we provide a characterization of elements of the group $G_{\!\unicode[STIX]{x1D70C}}$ which is a useful new tool in the study of these examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.