Abstract

An element of a group is reversible if it is conjugate to its own inverse, and it is strongly reversible if it is conjugate to its inverse by an involution. A group element is strongly reversible if and only if it can be expressed as a composite of two involutions. In this paper the reversible maps, the strongly reversible maps, and those maps that can be expressed as a composite of involutions are determined in certain groups of piecewise linear homeomorphisms of the real line.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.