Abstract

In this work, we introduce the concepts of compactly invariant and uniformly invariant. Also we define sometimes C-invariant closed subspaces and then prove every m-dimensional normed space with m > 1 has a nontrivial sometimes C-invariant closed subspace. Sequentially C-invariant closed subspaces are also introduced. Next, An open problem on the connection between compactly invariant and uniformly invariant normed spaces has been posed. Finally, we prove a theorem on the existence of a positive operator on a strict uniformly invariant Hilbert space. DOI: http://dx.doi.org/10.3126/bibechana.v10i0.7555 BIBECHANA 10 (2014) 31-33

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.