Abstract

We apply the modulated Fourier expansion to a class of second order differential equations which consists of an oscillatory linear part and a nonoscillatory nonlinear part, with the total energy of the system possibly unbounded when the oscillation frequency grows. We comment on the difference between this model problem and the classical energy bounded oscillatory equations. Based on the expansion, we propose the multiscale time integrators to solve the ODEs under two cases: the nonlinearity is a polynomial or the frequencies in the linear part are integer multiples of a single generic frequency. The proposed schemes are explicit and efficient. The schemes have been shown from both theoretical and numerical sides to converge with a uniform second order rate for all frequencies. Comparisons with popular exponential integrators in the literature are done.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.