Abstract

Elliptic sheaves (which are related to Drinfeld modules) were introduced by Drinfeld and further studied by Laumon--Rapoport--Stuhler and others. They can be viewed as function field analogues of elliptic curves and hence are objects "of dimension 1". Their higher dimensional generalisations are called abelian sheaves. In the analogy between function fields and number fields, abelian sheaves are counterparts of abelian varieties. In this article we study the moduli spaces of abelian sheaves and prove that they are algebraic stacks. We further transfer results of Cerednik--Drinfeld and Rapoport--Zink on the uniformization of Shimura varieties to the setting of abelian sheaves. Actually the analogy of the Cerednik--Drinfeld uniformization is nothing but the uniformization of the moduli schemes of Drinfeld modules by the Drinfeld upper half space. Our results generalise this uniformization. The proof closely follows the ideas of Rapoport--Zink. In particular, analogies of $p$-divisible groups play an important role. As a crucial intermediate step we prove that in a family of abelian sheaves with good reduction at infinity, the set of points where the abelian sheaf is uniformizable in the sense of Anderson, is formally closed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.