Abstract
Consider an insurer who is allowed to make risk-free and risky investments. The price process of the investment portfolio is described as a geometric Lévy process. We study the tail probability of the stochastic present value of future aggregate claims. When the claim-size distribution is of Pareto type, we obtain a simple asymptotic formula which holds uniformly for all time horizons. The same asymptotic formula holds for the finite-time and infinite-time ruin probabilities. Restricting our attention to the so-called constant investment strategy, we show how the insurer adjusts his investment portfolio to maximize the expected terminal wealth subject to a constraint on the ruin probability.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have