Abstract

We present two uniform estimates on stability and mean-field limit for the 'augmented Kuramoto model (AKM)' arising from the second-order lifting of the first-order Kuramoto model (KM) for synchronization. In particular, we address three issues such as synchronization estimate, uniform stability and mean-field limit which are valid uniformly in time for the AKM. The derived mean-field equation for the AKM corresponds to the dissipative Vlasov-McKean type equation. The kinetic Kuramoto equation for distributed natural frequencies is not compatible with the frequency variance functional approach for the complete synchronization. In contrast, the kinetic equation for the AKM has a similar structural similarity with the kinetic Cucker-Smale equation which admits the Lyapunov functional approach for the variance. We present sufficient frameworks leading to the uniform stability and mean-field limit for the AKM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.