Abstract

We prove that the superconvergence properties of the hybridizable discontinuous Galerkin method for second-order elliptic problems do hold uniformly in time for the semidiscretization by the same method of the heat equation provided the solution is smooth enough. Thus, if the approximations are piecewise polynomials of degree $k$, the approximation to the gradient converges with the rate $h^{k+1}$ for $k\ge 0$ and the $L^2$-projection of the error into a space of lower polynomial degree superconverges with the rate $\sqrt {\log (T/h^2)} h^{k+2}$ for $k\ge 1$ uniformly in time. As a consequence, an element-by-element postprocessing converges with the rate $\sqrt {\log (T/h^2)} h^{k+2}$ for $k\ge 1$ also uniformly in time. Similar results are proven for the Raviart-Thomas and the Brezzi-Douglas-Marini mixed methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.