Abstract
Proposed by Donoho (Ann. Statist. 25 (1997) 1870–1911), Dyadic CART is a nonparametric regression method which computes a globally optimal dyadic decision tree and fits piecewise constant functions in two dimensions. In this article, we define and study Dyadic CART and a closely related estimator, namely Optimal Regression Tree (ORT), in the context of estimating piecewise smooth functions in general dimensions in the fixed design setup. More precisely, these optimal decision tree estimators fit piecewise polynomials of any given degree. Like Dyadic CART in two dimensions, we reason that these estimators can also be computed in polynomial time in the sample size N via dynamic programming. We prove oracle inequalities for the finite sample risk of Dyadic CART and ORT, which imply tight risk bounds for several function classes of interest. First, they imply that the finite sample risk of ORT of order r≥0 is always bounded by CklogN N whenever the regression function is piecewise polynomial of degree r on some reasonably regular axis aligned rectangular partition of the domain with at most k rectangles. Beyond the univariate case, such guarantees are scarcely available in the literature for computationally efficient estimators. Second, our oracle inequalities uncover minimax rate optimality and adaptivity of the Dyadic CART estimator for function spaces with bounded variation. We consider two function spaces of recent interest where multivariate total variation denoising and univariate trend filtering are the state of the art methods. We show that Dyadic CART enjoys certain advantages over these estimators while still maintaining all their known guarantees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.