Abstract

The integration of high-k gate dielectrics with two-dimensional (2D) semiconducting channel materials is essential for high-performance and low-power electronics. However, the conformal deposition of a uniform high-k dielectric with sub-1 nm equivalent oxide thickness (EOT) and high interface quality on high-mobility 2D semiconductors is still challenging. Here, we report a facile approach to synthesize a uniform high-k (εr ∼ 22) amorphous native oxide Bi2SeOx on the high-mobility 2D semiconducting Bi2O2Se using O2 plasma at room temperature. The conformal native oxide can directly serve as gate dielectrics with EOT of ∼0.9 nm, while the original properties of underlying 2D Bi2O2Se is preserved. Furthermore, high-resolution area-selective oxidation of Bi2O2Se is achieved to fabricate discrete electronic components. This facile integration of a high-mobility 2D semiconductor and its high-k native oxide holds high promise for next-generation nanoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.