Abstract
It is a well known fact that families of minimal rational curves on rational homogeneous manifolds of Picard number one are uniform, in the sense that the tangent bundle to the manifold has the same splitting type on each curve of the family. In this note we prove that certain—stronger—uniformity conditions on a family of minimal rational curves on a Fano manifold of Picard number one allow to prove that the manifold is homogeneous.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.