Abstract

In this paper, we consider a natural question how many minimal rational curves are needed to join two general points on a Fano manifold X of Picard number 1. In particular, we study the minimal length of such chains in the cases where the dimension of X is at most 5, the coindex of X is at most 3 and X equips with a structure of a double cover. As an application, we give a better bound on the degree of Fano 5-folds of Picard number 1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.