Abstract
We consider reaction-diffusion systems on a bounded domain with no-flux boundary conditions. The reaction system is given by mass-action law kinetics and is assumed to satisfy the complex-balance condition. In the case of a diagonal diffusion matrix, the relative entropy is a Liapunov functional. We give an elementary proof for the Liapunov property as well a few explicit examples for the condition of complex or detailed balancing. We discuss three methods to obtain energy-dissipation estimates, which guarantee exponential decay of the relative entropy, all of which rely on the log-Sobolev estimate and suitable handling of the reaction terms as well as the mass-conservation relations. The three methods are (i) a convexification argument based on the author’s joint work with Haskovec and Markowich, (ii) a series of analytical estimates derived by Desvillettes, Fellner, and Tang, and (iii) a compactness argument developed by Glitzky, Groger, and Hunlich.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have