Abstract
If G is a group of homeomorphisms of a uniform space (X,L) and the action is uniformly equicontinuous, then the topologies of pointwise τp and uniform τL convergences are among admissible group topologies. We investigate uniform properties of topological groups (G,τp) and (G,τL) of homeomorphisms of a uniform space X with uniformly equicontinuous action, uniform properties of X and connections between them. If X is a coset space of G with respect to a neutral subgroup and the maximal equiuniformity U on X is totally bounded, then the action is uniformly micro-transitive. Necessary and sufficient conditions when the group of homeomorphisms in the topology of pointwise convergence is κ-narrow (in particular precompact) are given. Spectral representations of acting groups and phase spaces are presented. A sufficient condition for the Roelcke precompactness of a topological group is established. For the actions of the unitary group on the unit sphere in a Hilbert space and of the isometry group on the Urysohn sphere U1 in the topology of pointwise convergence the maximal equiuniformities are totally bounded. The maximal equivariant compactification βGU1 is homeomorphic to the Hilbert cube.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.