Abstract
In this paper we define the multifractional Brownian motion and we give some properties. we study the uniform Convergence of the Serie expansion. After having determined the covariance function, we give in proposition 2 another proof of almost sure uniform convergence on compact K of the series. We will finish by showing that the m.B.f is locally astymptotically self-similar, with field or fractional Brownian field with Hurst exposant H. One of the problem, for application of multifractional Brownian motion, is the regularity of the function. In the filtered white noise model the increments are no more homogeneous as in fractional Brownian field case. It is obvious when we consider the tangent field associated with a function. Still the multifractional function in the previous model is constant and it is not convient for many applications. We show the uniform convergence of the series on K. We deduce from the previous questions the almost sure uniform convergence of the series to a mBm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have