Abstract
A singularly perturbed Volterra integro-differential problem is considered. At first, this problem is discretized by using the variable two-step backward differentiation formula (BDF2) and the trapezoidal formula on a Bakhvalov-type mesh to approximate the first-order derivative term and the integral term, respectively. Then, the stability and convergence analysis of the proposed numerical method are carried out. It is shown that the proposed numerical method is second-order uniformly convergent with respect to perturbation parameter ɛ in the discrete maximum norm. Finally, the theoretical find is illustrated by numerical experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.