Abstract
In this paper, we consider the problem of obtaining the asymptotics of solutions of differential operators in a neighborhood of an irregular singular point. More precisely, we construct uniform asymptotics for solutions of linear differential equations with second-order meromorphic coefficients in a neighborhood of a singular point and apply the results obtained to the equations of mathematical physics. The main results related to the construction of uniform asymptotics are obtained using resurgent analysis methods applied to differential equations with irregular singularities. These results allow us to construct asymptotics for any second-order equations with meromorphic coefficients—that is, with an arbitrary order of degeneracy. This also allows one to determine the type of a singular point and highlight the cases where the point is non-singular or regular.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.