Abstract
In this work, we investigate a uniform approximation of a nonautonomous delayed CNN-Hopfield-type impulsive system with an associated impulsive differential system where a partial discretization is introduced with the help of piecewise constant arguments. Sufficient conditions are formulated, which imply that the error estimate decays exponentially with time on the half-line [ 0 , ∞ ) . A critical step for the proof of this estimate is to show that, under the assumed conditions, the solutions of the Hopfield impulsive system are exponentially bounded and exponentially stable. A bounded coefficients case is also analyzed under simplified conditions. An example is presented and simulated in order to show the applicability of our conditions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have