Abstract
Probabilistic models for biological sequences (DNA and proteins) have many useful applications in bioinformatics. Normally, the values of parameters of these models have to be estimated from empirical data. However, even for the most common estimates, the maximum likelihood (ML) estimates, properties have not been completely explored. Here we assess the uniform accuracy of the ML estimates for models of several types: the independence model, the Markov chain and the hidden Markov model (HMM). Particularly, we derive rates of decay of the maximum estimation error by employing the measure concentration as well as the Gaussian approximation, and compare these rates.
Accepted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have