Abstract
We derive stability estimates in H2 for elliptic problems with impedance boundary conditions that are uniform with respect to the impedance coefficient. Such estimates are of importance to establish sharp error estimates for finite element discretizations of contact impedance and high-frequency Helmholtz problems. Though stability in H2 is easily obtained by employing a bootstrap argument and well-established result for the corresponding Neumann problem, this strategy leads to a stability constant that increases with the impedance coefficient. Here, we propose alternative proofs to derive sharp and uniform stability constants for domains that are convex or smooth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.