Abstract

Analytic results for the stability of resistive ballooning modes (RBMs) and electron inertial ballooning modes are obtained using a two-scale analysis. This work generalizes previous calculations used for axisymmetric ŝ−α geometry [R. H. Hastie, J. J. Ramos, and F. Porcelli, Phys. Plasmas 10, 4405 (2003)] to general three-dimensional geometry. A unified theory is developed for RBMs and inertial ballooning modes, in which the effects of both ideal magnetohydrodynamic free energy (as measured by the asymptotic matching parameter Δ′) and geodesic curvature drives in the nonideal layer are included in the dispersion relation. This unified theory can be applied to determine the stability of drift-resistive-inertial ballooning modes in the low temperature edge regions of tokamak and stellarator plasmas where steep density gradients exist.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call