Abstract
Resistive ballooning modes in general three-dimensional configurations are studied on the basis of the equations of motion of resistive MHD. Assuming small, constant resistivity and perturbations localized transversally to the magnetic field, a stability criterion is derived in the form of a coupled system of two second-order differential equations. This criterion contains several limiting cases, in particular the ideal ballooning mode criterion and criteria for the stability of symmetric systems. Assuming small growth rates, analytical results are derived by multiple-length-scale expansion techniques. Instabilities are found, their growth rates scaling as fractional powers of the resistivity
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.