Abstract

In a $\Lambda$ system with two nearly degenerate ground states and one excited state in an atom or quantum dot, spontaneous radiative decay can lead to a range of phenomena, including electron-photon entanglement, spontaneously generated coherence, and two-pathway decay. We show that a treatment of the radiative decay as a quantum evolution of a single physical system composed of a three-level electron subsystem and photons leads to a range of consequences depending on the electron-photon interaction and the measurement. Different treatments of the emitted photon channel the electron-photon system into a variety of final states. The theory is not restricted to the three-level system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.