Abstract

In this paper, we propose a semi-smooth Newton method and a primal-dual active set strategy to solve dynamical contact problems with friction. The conditions of contact with Coulomb’s friction can be formulated in the form of a fixed point problem related to a quasi-optimization one thanks to the semi-smooth Newton method. This method is based on the use of the primal-dual active set (PDAS) strategy. The main idea here is to find the correct subset mathcal{A} of nodes that are in contact (active) opposed to those which are not in contact (inactive). For each case, the nonlinear boundary condition is replaced by a suitable linear one. Numerical experiments on both hyper-elastic problems and rigid granular materials are presented to show the efficiency of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.