Abstract

SummaryThis paper presents a unified formulation for the kinematics, singularity and workspace analyses of parallel delta robots with prismatic actuation. Unlike the existing studies, the derivations presented in this paper are made by assuming variable angles and variable link lengths. Thus, the presented scheme can be used for all of the possible linear delta robot configurations including the ones with asymmetric kinematic chains. Referring to a geometry-based derivation, the paper first formulates the position and the velocity kinematics of linear delta robots with non-iterative exact solutions. Then, all of the singular configurations are identified assuming a parametric content for the Jacobian matrix derived in the velocity kinematics section. Furthermore, a benchmark study is carried out to determine the linear delta robot configuration with the maximum cubic workspace among symmetric and semi-symmetric kinematic chains. In order to show the validity of the proposed approach, two sets of experiments are made, respectively, on the horizontal and the Keops type of linear delta robots. The experiment results for the confirmation of the presented kinematic analysis and the simulation results for the determination of the maximum cubic workspace illustrate the efficacy and the flexible applicability of the proposed framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.