Abstract

We present a general theory of optical coherence tomography (OCT), which synthesizes the fundamental concepts and implementations of OCT under a common 3Dk-space framework. At the heart of this analysis is the Fourier diffraction theorem, which relates the coherent interaction between a sample and plane wave to the Ewald sphere in the 3Dk-space representation of the sample. While only the axial dimension of OCT is typically analyzed ink-space, we show that embracing a fully 3Dk-space formalism allows explanation of nearly every fundamental physical phenomenon or property of OCT, including contrast mechanism, resolution, dispersion, aberration, limited depth of focus, and speckle. The theory also unifies diffraction tomography, confocal microscopy, point-scanning OCT, line-field OCT, full-field OCT, Bessel beam OCT, transillumination OCT, interferometric synthetic aperture microscopy (ISAM), and optical coherence refraction tomography (OCRT), among others. Our unified theory not only enables clear understanding of existing techniques but also suggests new research directions to continue advancing the field of OCT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call