Abstract
Bistatic radar experiments carried out by Tyler and Howard during the Apollo 14, 15, and 16 missions provide a very useful dataset with which to compare theoretical models and experimental data. Vesecky et al. (1988) report that their model for near grazing angles compares favorably to experimental data. However, for angles of incidence around 80/spl deg/, all the analytical models considered by Vesecky et al. predict values for the quasi-specular cross sections that are about half the corresponding values taken from the Apollo 16 data. In this work, questions raised by this discrepancy between the reported analytical and experimental results are addressed. The unified full wave solutions are shown to be in good agreement with the bistatic radar data taken during Apollo 14 and 16 missions. Using the full wave approach, the quasi-specular contributions to the scattered field from the large scale surface roughness as well as the diffuse Bragg-like scattering from the small scale surface roughness are accounted for in a unified self-consistent manner. Since the full wave computer codes for the scattering cross sections contain ground truth data only, it is shown how it can be readily used to predict the rough surface parameters, based on the measured data. >
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have